Fermi National Accelerator Laboratory

het

FERMILAB-FN-575

Emittance Growth due to a Small
Low-frequency Perturbation

K.Y. Ng

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

November 1991

* Presented at the 5th ICFA Beam Dynamics Workshop, Corpus Christi, Texas, October 3-8, 1991.

..""E.' Operated by Unlversitias Research Assoclation Inc. under Contract No. DE-ACD02-76CHO3000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefullness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof.



Emittance Growth due to a Small
Low-frequency Perturbation

King-Yuen Ng
Fermi National Accelerator Laboratory,* Batavia, IL 60510

Abstract

With a small low-frequency perturbation, the transverse emittance of
a storage-ring beam will grow. The growth mechanism due to beta-
tron tune dependence on amplitude is discussed in the Hamiltonian
approach. Applications are given when the perturbation is due to
Jostlein’s scheme® of bunch centering as well as ground wave.

1. Introduction

Particle beam in a circular storage ring will experience transverse emittance growth when-
ever there is a perturbing modulation. The growth is caused mainly by energy spread plus
chromaticity and by nonlinear lattice characteristics. The source of the perturbation can be
ground waves, Jostlein’s bunch centering scheme,! rf noise, power noise, etc. The effects of
energy plus chromaticity have been analyzed in a previous paper.? In this paper, we concen-
trate only on the nonlinear lattice characteristics or betatron tune dependence on amplitude.
The detuning 15 assumed to be small so that no nonlinear resonances will be encountered. The
problem is dealt with in the Hamiltonian approach. The results are applied to the Jostlein’s
beam-centering scheme and ground motion.

2. The Model

Let X represent the horizontal or vertical position offset of a particle. The equation of
motion governing X along longitudinal path length s is

da?x . . VS o
et K(s)X = fdumam sin —R—HZ:OE(sf 2rmnR) (2.1)

where K(s) describes the focussing mechanism of the lattice which can be nonlinear, R is
the average radius of the storage ring, and v, is the perturbing tune (frequency divided by
revolution frequency) with a,, the amplitude per unit tune. The perturbation at the j-th turn
produces ar angular kick

AX' = /dumam sin 2mjv,, . (2.2)

We first define the Floquet variables

i o
df = 5

vef
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where 3 is the beta-function at a location and vy is the nominal betatron tune. Equation (2.1)
Lecomes

&’z . >
5 vie = /dumam\/,ﬁoug sin v, 6 Z 8(8 — 2mn) | (2.4)
n=0
with 8, the beta-function at the location of the kick. The corresponding Hamiltonian is
1 2.1 22
H:Ep +§ pa” — e F(6) , (2.5)

where the perturbing force is
F(6) = /dvmam VBovosine,6 Y 8(6 — 2xn) | (2.6)
n=0

We next perform a canonical transformation to the acticn-angle variables (J,¢) with the aid
of the generating function

Filz,¢) = - :‘12 rvortang . (2.7)
The transformation gives
z = \/%g cosg ,
(2.8)
DBO = - %; sing .

For the transformed Hamiltonian, we write specificaily

4J*  J2q
H = 1yJ — a—'-]—- - cospF(8) , (2.9)
o P41

so as to introduce tune dependence on amplitude. This Hamilionian will be the starling point
of our discussion, In the absence of the perturbing farce F(8), the betatron tune is

vy = e = g - ad? , (2.]0)

where the betatron amplitude is given by 4 = V/?.}_/J;U and a is the detuning.

In the absence of the perturbing force F(8), the Hamiltonian is an invariant, implying that
the particle stays or invariant curves in the z-p phase space. These curves are, in fact, circles of
constant J. With the perturbing force having an amplitude very much less than the betatron
amplitude, or

3
/dumam\/ﬁﬂ‘(vu_ ' (2]])
G

we assume that the svstem remains integrable, at least approximately. The invariant curves
will deviate from eireles,

3. New Invariant Curves

We trv to solve the Hamiltorian in Eq. (2.9) for each perturbing frequency v, For this, we
define the awfcgrated perturbing amplitude for this particular frequency as

= A/ Bdr, . (3.1)
The eguation of motion for ¢ is

dp ol
de¢ 8l

=g+ @) (AI/;}, EL?) s (32)



where Arg is the nonlinear tune spread due to detuning and is assumed to be small com-
pared with the nominal tune 1. These small terms are dropped for the time being. Thus,
approximately, we obtain

6= dot vof . (3.3)

The equation of motion for J is

dJ oH 2J .
@_m%_fdl—};smfpf‘(ﬂ). {3.4)

Substituting Eq. (3.3) for ¢(#), Eq. {3.4) can be integrated easily to give

20y [20g
- E= = Gm sin(go + 2a Ny sin 2r N oy,
\’ L4 \/ o EZ:D ° 0)
&
- --T Z icos{gg + 2mny, ) — cos{¢po+ 2mnr_ )J' , {3.5)

where Jg and Jy are, respectively, the actions of the particle after the 0-th and N-ih turn,
and we have defined
vy = + Vi - (3.6)

To find the invariani curves, we should look at the position of the particle every perturbation
period starting from the ng-th turn. In other words, there is a set of invariant curves for every
ng. Therefore, we let

N=no+ il i an integer . (3.7)
Um

The cosine series can then be summed neatly to give

N
> cos(ot+ 2mnry) = cos(go+ T Nvo L Tnovm ) sin(mNvgt Trovm, + T ) (3.8)
— sin g
and Eq. (3.5) becomes
205 2J S
\/,. N _ i} __(_lm*.,i { } \ (3.9)
\ 120 48R T, SN T
where
{- . } = sin 27ngl,m [sin(t;bn 1 2r Nwg)(eos 2merg — €08 270y, ) + cos{dg + 2 N i) sin 21ry0]
- €08 2ol SII 2704, SIN(do ~ 27 N bg) — sin ¢ sim 27y, (3.10)

if we look at the invariant curves every 1/vp, turns starting from turn zero (ny = 0), Eq. (3.9)
simplifies to
ZJV 2o am sm 211,

I i A [sin(_ﬁ - sin q-‘)(.J , (3.11)
\ Y vy dsinwr, sin 7.

where we have substituted ¢ = ¢y = 27Ny according te Eq. (3.3).

Ta check the existence of invariant curves when the last small term of Eq. (3.2) is included,
we perform a turn-by-turn simulation. Imitially and after N turns, 1he positions of the pdrtlclo
are denoted, respectively, by dye ¥ and Aye” ™ where the amplitude Ay / f Jvg Tor
J - 0or ¥, The kick at the j-th turn is d,, sin 2rji,. Then, fellowing the parhcle turn by

turn, we obtain

A"
{ v N —izr 5O Vi
Aye e = Age"'["b“}ﬂ:l vul 4 L Qg BI0 27 fiyy, € : >—f*=:*-1 , (3.12)
i=1



where 1) is the average betatron tune in the k-th turn and is dependent on the betatron
amplitude as given by Eq. (2.10). In the above, the complex notation (z,p/1), with z and
p/vo given by Eq. (2.8), has been used. We followed four particles which were placed initially
on the unit circle in the phase plane (Ag = 1 unit), at phases ¢p = 0, =/2, 7, and 37/2. The
nominal tune was o = 0.4, The perturbing frequency was f,,, = 20 Hz, or v, = 1/172 for the
SSC collider whose revolution frequency is fo = 3.440 kHz. The kick amplitude was taken as
@m = 0.1 unit and the detuning varied from 0.00 to 0.01 unit. The amplitude-phase plot is
displayed in Fig. la afier tracking for 5 x 107 turns. The plots demonstrate the existence of
the invariance curves for the four particles even when the last term of Eq. (3.2) is included.
Also the results are as expected from Eq. (3.11). These invariant curves are plotied in the
phase plane in Fig. 1b.
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Figure 1: Invariant curves for particles 1. 2, 3, and 4 are plotted amplitude-versus-phase in
{(a) and in the z-p phase plane in (b). The particles are marked on the dotted unit circles in
(b) representing the initial invariant curve for all the 4 particles.



Of course, the existence of new invariant curves does nat necessarily imply the increase in
emittance. It is the spread in betatron tune that leads to the emittance increase. The eventual
emittance will be given by the area of the closed invariant curve of particle 4. When particle 1
leads particle 4 by slightly more than /2 arriving at point A with particle 4 remaining at the
original position, the fractional increase in area will reach roughly half the maximum. The
number of turns N% required is given by

dug 1
A :“""'AA1411 ~ =, 313
SV S R (3.13)

where A4, is the amplitude diflerence between particles 1 and 4. With the aid of Eq. (2.10),

1

Ni~w ———
2 80-40_\.4%

(3.14)

The maximum fractional increase in emittance (or area) can be obtained from Eq. (3.11), or
Eq. {3.9) for all ng, by integrating A A% over { d¢ and divided by 7 Aj:

A @y 51N 27 by, .
— R e {3.15)

-~ ) s
€ 2Apsin“ Ty

where v4 in the denominator has been replaced by 1. A simulation was performed by placing
initially 201 particles evenly an a unit circle in the phase plane and tracked for 107 turns. The
maximuim spreads in z and p/vy were found for each turn. The area {(or emittance) was defined
by multiplying these two maximum spreads together and compared with 4. The emittance
computed in this way fluctvated from turn to turn, but we onlv recorded the emittance which
was larger than that of the previous turn. The simulatton was performed with betatron tune
1y = 0.4, perturbing tune 1y, = 1/172, detuning & = 0.001, kick amplitude a,, = 0.2. The
results are plotied in Fig. 2. As expected from Eq. (3.15), the fractional increase in emittance
reaches 0.004. We therefore put A4; = 0.00]1 in Eq. (3.14), giving N; ~ 1.2 x 10° turns
to reach half maximum. This estimation is in rough agreement with the simulation shown in
Fig. 2.
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Figure 2: Fraction growth in emittance plotted against turn number. showing the saturation
of the growth as predicted.



We want to point out that the fractional growth in emittance, as depicted in Eq. (3.15),
is in fact proportional to the incremental kick per turn @mtym, and the denominator exhibits
resonances whenever vy = £uy,, results to be expected physically. When the whole spectrum
of perturbation {requencies is included, Eq. (3.15) becomes

27,
Ae jd a.msm x,

. (3.16)
2Au sin?rig

The invariant curves for different values of ng are given by Eq. (3.11). Take for example the
situation of largest kick, ng = 1/41y,. The shift in amplitude becomes

y — 2JN ~\/— 2Jo _ _@msin 27rum [sin d(cos 2xrvg—cos 2muny, )+cos ¢sin 2xig+sin ¢ sin 21rum} ,
vy

" dsinwvy sinwu_ TV sin Tr_
(3.17)

where we have replaced ¢ + 2rNug by ¢. The shift in amplitude in Eq. (3.11) when ng = 0
is of O(@mum). However, when ng = 1/4um, the shift is of O(a,,) which is 1/i,, times bigger.
In fact, the separation of invariant curves for the four particles with ¢o = 0, n/2, =, and 3x/2
are still of O(&,m) just like Fig. 1b. The only difference is that al] the invariant curves have
Just been shifted upward by O(a,,) due to the perturbation amplitude. As a result, we can
neglect vy, in Eq. (3.17) and obtain

f2JN }2]0 dm cos(¢ + ﬁ‘Uo) (3.18)
T 2sinmyy '

A simulation with betatron tune vy = 0.4, perturbing tune v, = 1/172, detuning a = 0.01,
kick amplitude &,, = 0.1 is plotted in Fig. 3. The fussiness of the plot is due to the close
spacings of the invariant curves of the four particles staled above.
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Figure §: Invariant curves for the same 1 particles as in Fig. 1b when they are viewed start-
ing from turn n¢ = /vy when the modulation amplitude is at a maximum. Although the
variations are much bigger than those in Fig. 1a, the spacings of the curves are the same.

4. Jostlein’s Beam-centering Scheme

! one beam is rotated about the other at an in-

teraction point, and the resulting variation in luminosity serves to measure the amount and

In the Jostlein’s beam-centering scheme,



direction by which the two beam centers miss each other. In this situation, each beam acts on
the other to first order like a moving quadrupole of focal length fo = 8o /47 Aw,, where Ay,
is the head-on beam-beam tune shift. On the j-th turn, each beam receives a kick

bm ﬂO

Gyn SIN 27 Jlpy = I sin 2w jry, (4.1)

where b,, is the amplitude of the sinusoidal beam modulation. Note that in this consideration
only the lincar beam-beam effect has been taken into account. With the initial amplitude
Ao = @max/vBo where z,a, 15 the transverse maximum radius of the bunch, the fractional
growth in emittance from Eqg. (3.11) becomes

Ae by o sin2ryy,

_ bm Bo sin27n 4.2
< Toax 2fo sinmu, (4.2)

Take the S§5C as an example. For linear beam-beam tune shift Awy = 0.004, By = 0.5 m at
the interaction point, modulation tune vy, = 1/172 (f,, = 20 Hz), and betatron tune vy = 0.4,
the growth in emittance is found to be

b,
20 qoxprtm (4.3)
€

L x

which is indeed very small since we must choose by, € Tmay in practice.

We can estimate the growth time. For the 88C, a typical value for nonlinear detuning is
# = 48.0m ? found by Yan® in simulations using a full spectrum of random errors. If we use
7 = 380 m, a value at the F quad, this translates into our detuning 0 = pff = 1.87 x 10* m~!.
At 20 TeV, the rms bunch size 1s about ¢.12 mm at the F quad, thus A5 == 6.07 x 10~ ®m3.
From Eq. (3.11), the time to reach half maximum growth is 7.24 x 108 x (Zmax /bm) tumns or
58 % (®max /b ) hours.

I the Jostlein’s modulation 1s switched off abruptly, say, at turn number corresponding to
no = 1/4u, when the modulation amplitude is largest, the beam will eventually smear out due
to nonlinear tune spread. The growth in emittance will therefore be derived from Eq. {3.18)
instead, giving

Ae b o 1 b

Ac_ Im B — 0.026
€ Zmax fo sin Trg Zmax

, (4.1)

which is 26 times larger. However, this smearing time is extremely long. It takes roughly
(@doAA) ' = 1.1 x 10° x (£max/bm) turns or 9.0 X (2max/bm) hours. Thesefore, the offset
bunch can always be kicked back easily Lo the ideal closed orbit by an active kicker and no
ermittance growth due to nonbinear tune spread will occur.

5.0 Perturbation due to Ground Motion
5.1 Quarry Blast

There is a guarry blast albout Y miles away from the S5C rings, which may be set off several
times in a week, Tunnel site measurement? shows that the spectrum is peaked at 1 Hz and
3 Nz with integrated vertical ground displacements® Ay - 1.43 and 1.08 micrans, respectively.
The 85C callider ring consists of $0° codl of length £ 2285 m. The focal lengths of the
gquadrupoles are therefore fo - L/45in45° . 80.79 m and 3 = 390.1 m at the F quad. The
Lean modulation amplitudes are

(5.1)

Ay 2

byviBe [ 350 1007 3
fo 2,64 % 1077 m3

According to Eq. (3.14) or Eq. (3.16), the fractional growth in emittance is 0.00600, where a
factor of /1000 has been included o account for the ~ 1000 quadrupoles in the collider rng.



The time required to reach half maximum, estimated from Eq. (3.14), gives 1.2 x 10® turns
or 9.7 hours. Both the ground-wave peaks at 1 Hz and 3 Hz have a full width of about 1 Hs,
correspending to a correlation time of ¥ ~ 2 sec, for which the growth is extremely tiny. The
quarry blast usually lasts {or only 30 sec. The total growth is still negligibly small.

However, at the end of a correlated wave, the beam can be kicked off-center, resulting in
emittance growth due to nonlinear tune spread. If we average over the ny in Eq. (3.7), the
average amount of off-center shift after the abrupt end of a correlated wave is

; Ty, P 8 3
AA) =3 2 % /1000 = 650 x 107 m? 5.2

A4 Z T sin T4 ! (62)
which is of the same crder of magnitude as Aq, the original size of the bunch. The smearing
time is found to be 4.8 x 10° turns or 140 sec. Thus, an active damper can always be used (o
kick the heam back to its ideal orbit avoiding anv nonlinear smearing.

5.2 Crossing Train

The Midlothian train crosses the collider ring at a point where the tunnel depth is only 20 m.
Site measurement? shows a specirum having 2 peaks at 3 Hz and 7 Hz with integrated vertical
displacements® §y = 0.55 and 0.58 micron, respectively. The beam modulation amplitudes are
oy = 1.3 % 1077 and 1.42 x 107 m3. The fraciional growih in emiltance is 0.00232, where
a factor of 10 has been included 1o represent the assumption that 10 nearby quadrupoles are
affected by the train and they contribute equally. Tt takes 3.12 x 10% turns or about 25 hours
to reach half maximum. A onec-mile train traveling at 30 mph will take about 120 sec 1o cross
the ring. As a result, the growth should be negligibly sinall.

The peak at 1 Hz has a full width of 1 Hz and the one at 7 Hz has a full width of 12 Haz.
The correlation time for the two frequencies are therefore 2 and (.17 sec, respectively. Again
abrupt stopping of a correlated wave will throw the beam ofl-center. But because of the small
nonlinear tune spread, smearing can be avoided by an actlive damper.

3.3 Ambieni Ground Neisce

The ambient ground noise measured at several tunnel positions at different times varied
aver two orders of magnitudes.® The inlegrated average vertical displacement was found to
bed 0,015 micron having a tvpical frequency of 3 Hz. For 1000 quadrupeles, the fractional
and the time 1o reach half maximom is 1.25 x 10'? turns
or 1012 hours. Therefore, the growth will be negligible even for a duration of a whole day.
Again the beam offset due to abrupt stopping of a correlated wave can be restored to the ideal
position through an active damper without introducing any nonlinear smearing.

5

growtlh in emittance is 5.78 x 107+
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